Применение ортофосфорной кислоты в быту, сельском хозяйстве и пищевой промышленности - химические свойства. Фосфорная кислота Как из фосфора получить

Обычно датой открытия фосфора считается 1669 г., однако имеются некоторые указания, что он был известен и ранее. Гефер, например, сообщает, что в алхимическом манускрипте из сборника, хранящегося в Парижской библиотеке, говорится о том, что еще около ХII в. некто Алхид Бехиль получил при перегонке мочи с глиной и известью вещество, названное им "эскарбукль". Может быть, зто и был фосфор, составляющий большой секрет алхимиков. Во всяком случае известно, что в поисках философского камня алхимики подвергали перегонке и другим операциям всевозможные материалы, в том числе мочу, зкскременты, кости и т. д.

С древних времен фосфорами называли вещества, способные светиться в темноте. В XVII в. был известен болонский фосфор - камень, найденный в горах вблизи Болоньи; после обжига на углях камень приобретал способность светиться. Описывается также "фосфор Балдуина", приготовленный волостным старшиной алдуином из прокаленной смеси мела и азотной кислоты. Свечение подобных веществ вызывало крайнее удивление и почиталось чудом.

В 1669 г. гамбургский алхимик-любитель Бранд, разорившийся купец, мечтавший с помощью алхимии поправить свои дела, подвергал обработке самые разнообразные продукты. Предполагая, что физиологические продукты могут содержать "первичную материю", считавшуюся основой философского камня, Бранд заинтересовался человеческой мочой.

О, как он был увлечён идеей, какие усилия предпринимал для её воплощения! Полагая, что продукты жизнедеятельности человека, «царя природы», могут содержать так называемую первичную энергию, неутомимый экспериментатор занялся перегонкой человеческой мочи, можно сказать, в промышленных масштабах: в солдатских казармах он собрал её в общей сложности целую тонну! И выпаривал до сиропообразного состояния (не за один приём, понятное дело!), а после дистилляции снова перегонял полученное «уринное масло» и долго его прокаливал. В результате в реторте появилась белая пыль, оседавшая на дно и светившаяся, поэтому было названо Брандом «холодным огнем» (kaltes Feuer). Современники Бранда назвали это вещество фосфором из-за его способности светиться в темноте (др. греч. jwsjoroV).


В 1682 Бранд опубликовал результаты своих исследований, и сейчас он справедливо считается первооткрывателем элемента № 15. Фосфор явился первым элементом, открытие которого документально зафиксировано, и его первооткрыватель известен.

Интерес к новому веществу был грандиозный, и Бранд этим пользовался - он демонстрировал фосфор только за деньги или обменивал небольшие его количества на золото. Несмотря на многочисленные усилия, осуществить свою заветную мечту - получить золото из свинца с помощью «холодного огня» — гамбургский купец так и не смог, и поэтому вскоре он продал рецепт получения нового вещества некоему Крафту из Дрездена за двести талеров. Новому хозяину удалось сколотить на фосфоре значительно бóльшее состояние - с «холодным огнем» он разъезжал по всей Европе и демонстрировал его ученым, высокопоставленным и даже королевским особам, например, Роберту Бойлю, Готфриду Лейбницу, Карлу Второму. Хотя способ приготовления фосфора держался в строжайшем секрете, в 1682 его удалось получить Роберту Бойлю, но и он сообщил свою методику только на закрытом заседании Лондонского королевского общества. Способ Бойля был предан огласке уже после его смерти, в 1692.

Весной 1676 г. Крафт устроил сеанс опытов с фосфором при дворе курфюрста Фридриха Вильгельма Бранденбургского. В 9 часов вечера 24 апреля все свечи в помещении были погашены, и Крафт показал присутствующим эксперименты с «вечным огнем», не открыв, однако, метода, с помощью которого было приготовлено это волшебное вещество.

Весной следующего года Крафт приехал ко двору герцога Иоганна Фридриха в Ганновер3, где в это время в качестве библиотекаря служил немецкий философ и математик Г.В.Лейбниц (1646-1716). Крафт и здесь устроил сеанс опытов с фосфором, показав, в частности, две склянки, которые светились подобно светлячкам. Лейбница, как и Кункеля, чрезвычайно заинтересовало новое вещество. На первом сеансе он спросил Крафта, не будет ли в состоянии большой кусок этого вещества осветить целую комнату. Крафт согласился, что это вполне возможно, но будет непрактично, т. к. процесс приготовления вещества очень сложен.



У кого такая была? У меня была.

Попытки Лейбница склонить Крафта к продаже секрета для герцога не удались. Тогда Лейбниц отправился в Гамбург к самому Бранду. Здесь ему удалось заключить между герцогом Иоганном Фридрихом и Брандом контракт, согласно которому первый был обязан уплатить Бранду 60 талеров за раскрытие секрета. С этого времени Лейбниц вступил в регулярную переписку с Брандом.

Примерно в то же время в Гамбург приехал И.И.Бехер (1635—1682) с целью сманить Бранда к герцогу Мекленбургскому. Однако Бранда снова перехватил Лейбниц и увез его в Ганновер к герцогу Иоганну Фридриху. Лейбниц был в полной уверенности, что Бранд очень близок к открытию «философского камня», и потому советовал герцогу не отпускать его, пока он не выполнит этой задачи. Бранд, однако, пробыл в Ганновере пять недель, приготовил вне города свежие запасы фосфора, показал, согласно договору, секрет производства и уехал.

Тогда же Бранд приготовил значительное количество фосфора для физика Христиана Гюйгенса, изучавшего природу света, и отослал запас фосфора в Париж.

Бранд, однако, был очень неудовлетворен той ценой, которую дали ему за раскрытие секрета производства фосфора Лейбниц и герцог Иоганн Фридрих. Он послал Лейбницу гневное письмо, в котором пожаловался, что полученной суммы не хватило даже для содержания его семьи в Гамбурге и оплаты путевых расходов. Аналогичные письма присылала Лейбницу и жена Бранда — Маргарита.

Недоволен был Бранд и Крафтом, которому в письмах высказывал обиду, упрекая его за то, что он перепродал секрет за 1000 талеров в Англию. Крафт переслал это письмо Лейбницу, который посоветовал герцогу Иоганну Фридриху не раздражать Бранда, оплатить ему раскрытие секрета более щедро, опасаясь, что автор открытия в виде акта мести сообщит рецепт изготовления фосфора еще кому-нибудь. Самому Бранду Лейбниц послал успокоительное письмо.

По-видимому, Бранд получил вознаграждение, т.к. в 1679 г. снова приехал в Ганновер и работал там два месяца, получая еженедельное жалованье в 10 талеров с дополнительной оплатой стола и дорожных расходов. Переписка Лейбница с Брандом, судя по письмам, хранящимся в Ганноверской библиотеке, продолжалась до 1684 г.

Вернемся теперь к Кункелю. Если верить Лейбницу, то Кункель узнал через Крафта рецепт изготовления фосфора и принялся за работу. Но первые его опыты были безуспешны. Он слал Бранду письмо за письмом, в которых жаловался, что ему был прислан очень непонятный для другого лица рецепт. В письме, написанном в 1676 г. из Виттенберга, где в это время жил Кункель, он спрашивал Бранда о деталях процесса.

В конце концов Кункель в своих опытах добился успеха, несколько видоизменив способ Бранда. Прибавив немного песка к сухой моче перед ее перегонкой, он получил фосфор и… заявил претензию на самостоятельность открытия. В этом же году, в июле, Кункель рассказал о своих успехах своему другу, профессору Виттенбергского университета Каспару Кирхмейеру, опубликовавшему по этому вопросу работу под заглавием «Постоянный ночной светильник, иногда сверкающий, который долго искали, ныне найденный». В этой статье Кирхмейер говорит о фосфоре как о давно известном светящемся камне, но не употребляет сам термин «фосфор», очевидно, еще к тому времени не привившийся.

В Англии независимо от Бранда, Кункеля и Кирхмейера в 1680 г. фосфор был получен Р.Бойлем (1627-1691). Бойль знал о фосфоре от того же Крафта. Еще в мае 1677 г. фосфор был продемонстрирован в Лондонском королевском обществе. Летом того же года и сам Крафт приехал с фосфором в Англию. Бойль, согласно его собственному рассказу, посетил Крафта и видел у него фосфор в твердом и жидком виде. В благодарность за радушный прием Крафт, прощаясь с Бойлем, намекнул ему, что главным веществом его фосфора было нечто, присущее человеческому телу. Очевидно, этого намека было достаточно, чтобы дать толчок работам Бойля. После отъезда Крафта он начал испытывать кровь, кости, волосы, мочу, и в 1680 г. его усилия получить светящийся элемент увенчались успехом.

Бойль начал эксплуатировать свое открытие в компании с ассистентом — немцем Гауквицем. После смерти Бойля в 1691 г. Гауквиц развернул производство фосфора, улучшив его, в коммерческом масштабе. Продавая фосфор по три фунта стерлингов за унцию и снабжая им научные учреждения и отдельных ученых Европы, Гауквиц нажил огромное состояние. Для установления коммерческих связей он совершил путешествие по Голландии, Франции, Италии и Германии. В самом Лондоне Гауквиц основал ставшую еще при его жизни знаменитой фармацевтическую фирму. Любопытно, что, несмотря на все свои эксперименты с фосфором, порой очень опасные, Гауквиц дожил до 80 лет, пережив трех своих сыновей и всех лиц, которые участвовали в работах, связанных с ранней историей фосфора.

Со времени получения фосфора Кункелем и Бойлем он быстро стал падать в цене в результате конкуренции изобретателей. В конце концов наследники изобретателей стали знакомить за 10 талеров с секретом его производства всех желающих, все время понижая цену. В 1743 г. А.С.Маргграф нашел еще лучший способ производства фосфора из мочи и немедленно опубликовал его, т.к. промысел уже перестал быть выгодным.


В настоящее время фосфор нигде не производится по методу Бранда-Кункеля-Бойля, поскольку он совершенно нерентабелен. Ради исторического интереса все же приведем описание их способа.

Гниющую мочу выпаривают до сиропообразного состояния. Намешивают получившуюся густую массу с трехкратным количеством белого песка, помещают в реторту, снабженную приемником, и нагревают в течение 8 ч на ровном огне до тех пор, пока не будут удалены летучие вещества, после этого усиливают нагревание. Приемник наполняется белыми парами, превращающимися затем в голубоватый твердый и светящийся фосфор.

Свое название фосфор получил благодаря свойству светиться в темноте (от греч. - светоносный). Среди некоторых русских химиков было стремление дать элементу чисто русское название: «самоцвет», «светлей», но эти названия не привились.

Лавуазье в результате подробного изучения горения фосфора первым признал его за химический элемент.

Наличие фосфора в моче дало повод химикам искать его и в других частях тела животных. В 1715 г. фосфор был найден в мозгу. Значительное в нем присутствие фосфора послужило основанием для утверждения, что «без фосфора нет мысли». В 1769 г. Ю.Г.Ган нашел фосфор в костях, а через два года К.В.Шееле доказал, что кости состоят главным образом из фосфата кальция, и предложил способ получения фосфора из золы, остающейся после сжигания костей. Наконец, в 1788 г. М.Г.Клапрот и Ж.Л.Пруст показали, что фосфат кальция - чрезвычайно широко распространенный в природе минерал.

Аллотропное видоизменение фосфора - красный фосфор - было открыто в 1847 г. А.Шреттером. В работе, носящей заглавие «Новое аллотропное состояние фосфора», Шреттер пишет, что солнечный свет изменяет белый фосфор на красный, а такие факторы, как сырость, атмосферный воздух, никакого воздействия не оказывают. Красный фосфор Шреттер отделил обработкой сероуглеродом. Красный фосфор был приготовлен им также с помощью нагревания белого до температуры около 250 °С в инертном газе. В то же время было установлено, что дальнейшее повышение температуры снова ведет к образованию белой модификации.


Весьма интересно, что Шреттер первым же предсказал использование красного фосфора в спичечной отрасли промышленности. На Всемирной парижской выставке в 1855 г. демонстрировался красный фосфор, полученный уже заводским путем.

Русский ученый А.А.Мусин-Пушкин в 1797 г. получил новую модификацию фосфора - фиолетовый фосфор. Это открытие ошибочно приписывается И.В.Гитторфу, который, повторив почти полностью методику Мусина-Пушкина, получил фиолетовый фосфор лишь в 1853 г.

В 1934 г. профессор П.У.Бриджмен, подвергая белый фосфор давлению до 1100 атм, превратил его в черный и таким образом получил новое аллотропное видоизменение элемента. Вместе с цветом изменились физические и химические свойства фосфора: белый фосфор, например, на воздухе самовозгорается, а черный, подобно красному, не обладает этим свойством.


источники

воды , а не с др. фосфат-анионами. В р-рах фосфорной кислоты имеет место обмен атомами кислорода между группами PO 4 и водой .

H 3 PO 4 - сильная к-та, K 1 7,1·10 -3 (рК а 2,12), K 2 6,2·10 -8 (рК а 7,20), K 3 5,0·10 -13 (рК а 12,32); значения K 1 и K 2 зависят от т-ры. Диссоциация по первой ступени экзотермична, по второй и третьей - эндотермична. Фазовая диаграмма системы H 3 PO 4 - H 2 O приведена на рис. 2. Максимум кривой кристаллизации - при т-ре 302,4 К и содержании H 3 PO 4 91,6% (твердая фаза - гемигидрат). В табл. приведены св-ва р-ров фосфорной кислоты .

ХАРАКТЕРИСТИКА ВОДНЫХ РАСТВОРОВ H 3 PO 4

T. затв., 0 C

T. кип., 0 C

кДж/(кг·К)

Па ·с (25 0 C)

Уд. электрич. проводимость, См/м (25 0 C)

H 3 PO 4

P 2 O 5

5

3,62

0,8

100,10

4,0737

0,0010

10,0

3129,1

10

7,24

2,10

100,20

3,9314

0,0011

18,5

3087,7

20

14,49

6,00

100,80

3,6467

0,0016

18,3

2986,4

30

21,73

11,80

101,80

3,3411

0,0023

14,3

2835,7

40

28,96

21,90

103,90

3,0271

0,0035

11,0

2553,1

50

36,22

41,90

104,00

2,7465

0,0051

8,0

2223,8

60

43,47

76,9

114,90

2,4995

0,0092

7,2

1737,1

70

50,72

43,00

127,10

2,3278

0,0154

6,3

1122,6

75

54,32

17,55

135,00

2,2692

0,0200

5,8

805,2

Ф осфорная кислота при нормальных условиях малоактивна и реагирует лишь с карбонатами , гидроксидами и нек-рыми металлами . При этом образуются одно-, двух- и трехзамещенные фосфаты (см. Фосфаты неорганические). При нагр. выше 80 0 C реагирует даже с неактивными оксидами , кремнеземом и силикатами . При повышенных т-рах фосфорная кислота- слабый окислитель для металлов . При действии на металлич. пов-сть р-ром фосфорной кислоты с добавками Zn или Mn образуется защитная пленка (фосфатирование). Фосфорная кислота при нагр. теряет воду с образованием последовательно пиро- и метафосфорных к-т:

Фосфолеум (жидкий фосфорный ангидрид , суперфосфорная к-та) включает к-ты, содержащие от 72,4 до 88,6% P 2 O 5 , и представляет собой равновесную систему, состоящую из орто-, пиро-, Триполи-, тетраполи- и др. фосфорных к-т (см. Фосфаты конденсированные). При разбавлении суперфосфорной к-ты водой выделяется значит. кол-во тепла, и полифосфорные к-ты быстро переходят в ортофосфорную.



От др. фосфорных к-т H 3 PO 4 можно отличить по р-ции с AgNO 3 - выпадает желтый осадок Ag 3 PO 4 . Остальные фосфорные к-ты образуют белые осадки.

Получение. Фосфорную кислоту в лаб. условиях легко получить окислением фосфора 32%-ным р-ром азотной к-ты:

В пром-сти фосфорную кислоту получают термическим и экстракционным способами.

Термич. способ (позволяет производить наиб. чистую фосфорную кислоту) включает осн. стадии: сжигание (окисление) элементного фосфора в избытке воздуха , гидратацию и абсорбцию полученного P 4 O 10 (см. Фосфора оксиды), конденсацию фосфорной кислоты и улавливание тумана из газовой фазы. Существуют два способа получения P 4 O 10: окисление паров P (в пром-сти используют редко) и окисление жидкого P в виде капель или пленки. Степень окисления P в пром. условиях определяется т-рой в зоне окисления , диффузией компонентов и др. факторами. Вторую стадию получения термич. фосфорной кислоты- гидратацию P 4 O 10 - осуществляют абсорбцией к-той (водой) либо взаи-мод. паров P 4 O 10 с парами воды . Гидратация (P 4 O 10 + 6H 2 O 4H 3 PO 4) протекает через стадии образования полифосфорных к-т. Состав и концентрация образующихся продуктов зависят от т-ры и парциального давления паров воды .

Все стадии процесса м. б. совмещены в одном аппарате, кроме улавливания тумана, к-рое всегда производят в отдельном аппарате. В пром-сти обычно используют схемы из двух или трех осн. аппаратов. В зависимости от принципа охлаждения газов существуют три способа произ-ва термич. фосфорной кислоты : испарительный, циркуляционно-испарительный, теплообмен-но-испарительный. Испарит. системы, основанные на отводе теплоты при испарении воды или разб. фосфорной кислоты , наиб. просты в аппаратурном оформлении. Однако из-за относительно большого объема отходящих газов использование таких систем целесообразно лишь в установках небольшой единичной мощности.

Циркуляционно-испарит. системы позволяют совместить в одном аппарате стадии сжигания P, охлаждения газовой фазы циркулирующей к-той и гидратации P 4 O 10 . Недостаток схемы - необходимость охлаждения больших объемов к-ты. Теплообменно-испарит. системы совмещают два способа отвода теплоты: через стенку башен сжигания и охлаждения, а также путем испарения воды из газовой фазы; существенное преимущество системы - отсутствие контуров циркуляции к-ты с насосно-холодильным оборудованием.

На отечеств. предприятиях эксплуатируют технол. схемы с циркуляционно-испарит. способом охлаждения (двухбашен-ная система). Отличит. особенности схемы: наличие допол нит. башни для охлаждения газа , использование в циркуляционных контурах эффективных пластинчатых теплообменников ; применение высокопроизводит. форсунки для сжигания P, обеспечивающей однородное тонкодисперсное распыление струи жидкого P и полное его сгорание без образования низших оксидов .

Технол. схема установки мощностью 60 тыс. т в год 100%-ной H 3 PO 4 приведена на рис. 3. Расплавленный желтый фосфор распыляется нагретым воздухом под давлением до 700 кПа через форсунку в башне сжигания, орошаемой циркулирующей к-той. Нагретая в башне к-та охлаждается оборотной водой в пластинчатых теплообменниках . Продукционная к-та, содержащая 73-75% H 3 PO 4 , отводится из контура циркуляции на склад. Дополнит, охлаждение газов из башни сжигания и абсорбцию к-ты производят в башне охлаждения (гидратации), что снижает послед, температурную нагрузку на электрофильтр и способствует эффективной очистке газов . Отвод теплоты в башне гидратации осуществляется циркулирующей 50%-ной H 3 PO 4 , охлаждаемой в пластинчатых теплообменниках . Газы из башни гидратации после очистки от тумана H 3 PO 4 в пластинчатом электрофильтре выбрасываются в атмосферу . На 1 т 100%-ной H 3 PO 4 расходуется 320 кг P.


Рис. 3. Циркуляционная двухбашенная схема произ-ва термич. H 3 PO 4: 1 - сборник кислой воды ; 2 - хранилище фосфора ; 3,9 - циркуляционные сборники; 4,10 - по-гружные насосы ; 5,11 - пластинчатые теплообменники ; 6 - башня сжигания; 7 - фосфорная форсунка; 8 -башня гидратации ; 12 - электрофильтр; 13 - вентилятор.

Более экономичный экстракционный метод получения фосфорной кислоты основан на разложении прир. фосфатов к-тами (в осн. серной, в меньшей степени азотной и незначительно соляной). Фосфорнокислые р-ры, полученные разложением азотной к-той, перерабатывают в комплексные удобрения , разложением соляной к-той - в преципитат .

Сернокислотное разложение фосфатного сырья [в странах СНГ гл. обр. хибинского апатитового концентрата (см. Апатит)и фосфоритов Каратау] - осн. метод получения экстракционной фосфорной кислоты , применяемой для произ-ва конц. фосфорных и комплексных удобрений . Суть метода - извлечение (экстрагирование) P 4 O 10 (обычно используют ф-лу P 2 O 5) в виде H 3 PO 4 . По этому методу прир. фосфаты обрабатывают H 2 SO 4 с послед, фильтрованием полученной пульпы для отделения фосфорной кислоты от осадка сульфата Ca. Часть выделенного осн. фильтрата, а также весь фильтрат, полученный при промывке осадка на фильтре , возвращают в процесс экстрагирования (р-р разбавления) для обеспечения достаточной подвижности пульпы при ее перемешивании и транспортировке. Массовое соотношение между жидкой и твердой фазами от 1,7:1 до 3,0:1.

Прир. фосфаты разлагаются по схеме:

Разложению к-тами подвергаются также сопутствующие примеси: кальцит , доломит , сидерит, нефелин , глауконит, каолин и др. минералы . Это приводит к увеличению расхода используемой к-ты, а также снижает извлечение P 2 O 5 в целевой продукт вследствие образования нерастворимых фосфатов железа FeH 3 (PO 4) 2 · 2,5H 2 O при концентрациях P 2 O 5 выше 40% (содержание P 4 O 10 обычно дается в пересчете на P 2 O 5) и FePO 4 · 2H 2 O - при более низких концентрациях . Выделяю щийся при разложении карбонатов СО 2 образует в экстракторах стойкую пену ; р-римые фосфаты Mg, Fe и Al снижают активность фосфорной кислоты , а также уменьшают содержание усвояемых форм P 2 O 5 в удобрениях при послед. переработке фосфорной кислоты .

С учетом влияния примесей определены требования к фосфатному сырью, согласно к-рым прир. фосфаты с повышенным содержанием соед. Fe, Al, Mg, карбонатов и орг. в-в непригодны для произ-ва фосфорной кислоты .

В зависимости от т-ры и концентрации фосфорной кислоты в системе CaSO 4 -H 3 PO 4 -H 2 O сульфат Ca осаждается в виде дигидрата (гипса), гемигидрата или ангидрита. В реальных условиях осадок загрязнен примесями P 2 O 5 в виде неразложенных прир. фосфатов , недоотмытой H 3 PO 4 , сокристаллизованных фосфатов разл. металлов и др., поэтому образующиеся сульфаты Ca наз. соотв. фосфогипс, фосфогемигидрат и фосфо-ангидрит. В зависимости от типа осаждаемого сульфата различают три прямых способа произ-ва экстракционной фосфорной кислоты : дигидратный, полугидратный (гемигидратный) и ангидрит-ный, а также комбинированные: полугидратно-дигидратный и дигидратно-полугидратный.

В СНГ наиб. отработан в пром-сти дигидратный способ, к-рый отличается высоким выходом P 2 O 5 (93-96,5%) в продукционную к-ту; однако относительно низ кая концентрация фосфорной кислоты требует ее послед. упаривания. Осн. стадии процесса: экстракция с внеш. или внутр. циркуляцией и вакуумным или воздушным охлаждением экстракционной пульпы, дозревание пульпы после экстрактора , отделение фосфорной кислоты на наливных вакуум-фильтрах . Эффективность процесса определяют в осн.

Ортофосфорная (иногда встречается название фосфорная) кислота — кислота неорганического происхождения, средней мощности действия. Она представляет собой простую химическую формулу и обозначается как H3PO4 .

При соблюдении типичных условий и оптимальных температур хранения имеет вид аккуратных гигроскопичных кристаллов без цвета. В случаях, если температура разогревается до отметок от +42 до +213 градусов по Цельсию, упомянутое вещество преобразовывается в пирофосфорную кислоту с похожей химической формулой — H4P2O7.

Чаще всего ортофосфорной кислотой называют приблизительно 85%-й раствор на основе воды, который не имеет аромата и характеризуется в меру густым сиропоподобным видом. Кроме воды, упомянутая кислота отлично растворяется также в спирте и иных популярных растворителях.

Как получают ортофосфорную кислоту

Дабы получить упомянутое химическое соединение, не нужно иметь много денежных средств или времени. Как и лимонная, ортофосфорная кислота ныне очень востребована и производится в огромных количествах. На сегодняшний день специалистам известно три верных метода добычи ортофосфорной кислоты:

1. Гидролизом пентахлорида фосфора;
2. Получение из фосфата (экстракционный метод);
3. Смешиванием оксида фосфора(V) с обычной водой, полученного путем сжигания фосфора в кислороде (термический метод).

Так как реакция с водой проходит очень оживленно, оксид фосфора(V) обрабатывают разогретым до 200 градусов по Цельсию концентрированным раствором ортофосфорной кислоты.

Незначительное количество вещества можно без труда получить в лабораторных условиях методом окисления фосфора. А вот для производства такого соединения в серьезных, промышленных масштабах не обойтись без экстракционного и термического способа.

Ортофосфорная кислота в разных сферах жизни человека: где применяется

Сфера применения фосфорной кислоты сегодня весьма интересна и разнообразна. Так, упомянутое химическое вещество является незаменимым в разных отраслях промышленности, среди каких — пищевая.

Ортофосфорная кислота имеет едва выраженные кислотные свойства, легко вступает в реакцию с солями слабоактивных кислот, всевозможными металлами, основными оксидами, основаниями, аммиаком. Доступная цена сделала ортофосфорную кислоту востребованной в совершенно разных сферах.

Сельское хозяйство и фермерство

Соединение является очень распространенной добавкой для изготовления востребованных фосфорных либо комбинированных удобрений: солей аммония, кальция, натрия, марганца. По статистике, около 90% фосфорсодержащей руды расходуется для производства удобрений. Фосфор важен для растений при формировании семян и плодов. При этом, странами-производителями таких удобрений принято считать Соединенные Штаты Америки, Россию и Марокко, а странами-потребителями — практически все страны Африки, Азии и Европейского Союза.

На фермерских хозяйствах ветеринары часто советуют осуществлять выпойку животных раствором фосфорной кислоты с целью предотвращения возникновения камней в почках и желчном пузыре, повышения уровня кислотности желудка.

Пищевая промышленность

Особый интерес вызывает применение химических элементов, в том числе и фосфорной кислоты в пищевой промышленности. Так, в данной сфере ортофосфорная кислота выступает в роли регулятора кислотности и обозначается маркировкой Е338. Она — отличный антиоксидант, сохраняет цвет и продлевает срок годности различных напитков и продуктов питания.

В частности, добавку Е338 часто добавляют в такие востребованные среди населения продукты: разные колбасные изделия, плавленные сырки, разрыхлители, хлебобулочные и кондитерские изделия, молоко и детское питание, подслащенные газированные напитки и так далее.

Самый популярный напиток, в котором содержится ортофосфорная кислота — «Coca-cola». Как известно, такой напиток способен даже очистить металлические поверхности от ржавчины. При этом, концентрация кислоты в данном напитке не такая высокая, чтобы серьезно навредить желудку человека при употреблении в небольших количествах.

Производство бытовой химии и стройматериалов

Благодаря активному применению ортофосфорной кислоты и ее доступности, производители выпускают на рынок стройматериалов устойчивые к возгоранию лакокрасочные материалы, среди каких: лак, эмаль, пропитки, деревянные плиты и прочие материалы для строительства и ремонта. Незаменима фосфорная кислота и для производства спичек.

Растворы ортофосфорной кислоты активно применяются мастерами на деревообрабатывающих хозяйствах. Благодаря пропитке древесины данным веществом, дерево становится огнестойким.

Соли ортофосфорной кислоты отлично смягчают хлорированную воду, они содержатся в составе многих средств бытовой химии. Например, это стиральные порошки и гели, средства для мытья посуды, жидкости для устранения ржавчины и жира на поверхностях и так далее.

Молекулярная биология

Используется специалистами для проведения различных экспериментов и исследований.

Медицина

Интересно, что в медицине ортофосфорная кислота — компонент активированного угля. Также много лет она активно используется в стоматологии — при пломбировании. В незначительных количества этот состав присутствует в зубных пастах и отбеливателях для зубов.

Мало кто догадывается, что фосфорная кислота также является элементом протиток для изготовления непромокаемой и непродуваемой верхней одежды, в частности — горнолыжных костюмов.

Вредна ли ортофосфорная кислота для человека

Помните, что все хорошо в меру. Ортофосфорная кислота считается относительно безопасным химическим соединением при соблюдении норм ее потребления. Избыток потребления ортофосфорной кислоты вместе с продуктами питания может привести к плохому самочувствию, отвращению к еде, потере веса, хрупкости костей. Поэтому лучше избегать чрезмерного употребления продуктов с пищевой добавкой Е338.

При попадании кислоты в виде концентрированного раствора на кожу и слизистые человека, возможны ожоги. Также некоторые врачи-стоматологи заметили, что ортофосфорная кислота вредит верхнему слою зубной эмали при частом использовании для лечения зубов.

Вконтакте

Сырье для производства фосфорной кислоты

В природе известно более 120 минералов. Наиболее распространены и имеют промышленное значение минералы апатитовой группы - фторапатит Ca 10 F 2 (PO 4) 6 , гидрокисдапатит Ca 10 (PO 4) 6 (OH) 2 , хлорапатит.

К фосфатам группы апатита относятся минералы с общей формулой Ca 10 R 2 (PO 4) 6 , где R - F, Cl, OH.

Некоторая часть Са в апатитах замещена Sr, Ba, Mg, Mn, Fe и трехвалентными редкоземельными элементами в сочетании со щелочными металлами.

Мощность пластов достигает 200 м. Минералы, входящие в руду отличаются по физико-химическим и флотационным свойствам, что позволяет при флотации обогащать полученный концентрат с содержанием целевого продукта 92-93%.

Чистый кальций-фторапатит содержит: 42,22% Р 2 О 5 ; 55,6% СаО, 3,76% - F.

По происхождению фосфаты бывают магматические и осадочные. Магматические, или собственно апатитовые породы образовались либо при непосредственном застывании расплавленной магмы, либо в отдельных жилах в процессе кристаллизации магматического расплава (гематитовые жилы), либо при выделении из горячих водных растворов (гидротермальные образования), либо при взаимодействии магмы с известняком (контактовые).

Апатитовые породы имеют зернистую крупнокристаллическую структуру и характеризуются отсутствием полидисперсности и микропористости.

Осадочные фосфаты - фосфориты. Они образовались в результате выветривания горных пород, взаимодействия с другими горными породами - и отложения их как в рассеянном состоянии, так и с образованием крупных скоплений.

Фосфоритные руды отличаются от апатитовых высокой дисперсностью содержащихся в них фосфатных минералов и тесным срастанием их с сопутствующими минералами (примесями) Фосфориты быстрее растворяются в кислотах, чем апатиты.

Лучшее сырье для получения экстракционной фосфорной кислоты - апатитовый концентрат, содержащий 2% R2О3или 5% от общего содержания Р 2 О 5 . В нем почти отсутствуют карбонаты. Вследствие этого на его разложение расходуется наименьшее (по сравнению с другими видами сырья) количество серной кислоты.

При экстракции фосфорной кислоты из фосфоритов Каратау, содержащих значительное количество карбонатов, железистых и глинистых веществ, не только увеличивается расход серной кислоты, вследствие необходимости разложения карбонатов, но и фосфорная кислота получается худшего качества. Она содержит сульфаты и фосфаты магния, железа и алюминия, что обуславливает нейтрализацию значительной части (до половины) фосфорной кислоты. Кроме того, из такого сырья можно извлечь Р 2 О 5 на 3-6% меньше, чем из апатитового концентрата. Это объясняется, главным образом, ухудшением условий фильтрования и промывки фосфогипса, выделяющегося из раствора в виде кристаллов с малыми размерами, пронизанных примесями тонких глинистых частиц.

Другие виды фосфоритов - песчанистые (актюбинские, щигровские), глинисто-глауконитовые (вятские, рязанско-егорьевские) даже после обогащения, достигаемого современными методами, в настоящее время не применяются для получения фосфорной кислоты. Они могут быть использованы в смеси с апатитовым концентратом. Количество добавляемого апатита должно обеспечить такое отношение R2O3: Р2О5, которое позволяет осуществить процесс с минимальными потерями.

Термический способ получения ортофосфорной кислоты

Термический метод заключается в высокотемпературном восстановлении фосфатов и возгонке в электрических печах элементарного фосфора в присутствии углерода и кремнезема

Са 3 (РО 4) 2 + 5С + 2SiO 2 = P 2 + 5CO + Ca 3 Si 2 O 7 - 1460 кДж/моль.

Полученный фосфор окисляют до фосфорного ангидрида, а затем последний гидратируют водой; в результате образуется ортофосфорная кислота

2Р2 + 5О2 = 2Р2О5; Р2О5 + 3Н2О = 2Н3РО4.

По принципу охлаждения газов процессы получения фосфатов на основе элементарного фосфора могут быть классифицированы на системы с изменением агрегатного состояния хладагента и системы без изменения агрегатного состояния хладагента. Хладагентами в любом случае являются вода или фосфорная кислота

Главное преимущество термического способа, по сравнению с экстракционным, заключается в возможности переработки любых видов сырья, в том числе и низкокачественных фосфоритов, и получение кислоты высокой чистоты.

Экстракционный способ получения фосфорной кислоты

Кислотный метод основан на вытеснении сильными кислотами фосфорной кислоты из фосфатов. Наибольшее распространение на практике нашел метод сернокислотной экстракции.

Процесс протекает по следующему суммарному уравнению:

Ca 5 F(PO 4) 3 + 5H 2 SO 4 = 5CaSO 4 (тв) + 3Н 3 РО 4 + HF.

В зависимости от температуры процесса и концентрации Р2О5 в растворе сульфат кальция (фосфогипс) выделяется в виде CaSO4·2H2O (дегидратный режим), СаSO4·0,5H2O (полугидратный режим) и СаSO4 (ангидридный режим). Промышленное распространение нашли первые два режима.

Образующийся фтористый водород взаимодействует с H2SiO3

4HF + H 2 SiO 3 = SiF 4 + 3H 2 O.

При этом SiF4 частично выделяется в газовую фазу, а частично остается в растворе ЭФК в виде H2SiF6.

Обычно получаемая экстракционная кислота загрязнена примесями сырья и имеет низкую концентрацию (25-32% Р 2 О 5), поэтому ее необходимо упаривать до более высокой концентрации.

Основными преимуществами экстракционного процесса является его простота и возможность производства более дешевой Н 3 РО 4 . Недостаток - получаемая ЭФК загрязнена примесью полуторных оксидов (Al2O3, Fe2O3), соединениями фтора и СаSO 4 .

Производство фосфорной кислоты дигидратным и полугидратным методами

Существуют различные способы получения фосфорной кислоты разной концентрации с выделением дигидрата сульфата кальция. Наиболее удобна классификация и оценка разных способов в зависимости от концентрации получаемой кислоты, так как именно она - основной показатель качества продукции и один из главных технологических параметров, определяющих все другие - температуру, длительность взаимодействия реагентов, форму и фильтрующие свойства выделяющихся кристаллов сульфата кальция и т.п.

В настоящее время дигидратным способом производят Н 3 РО 4 с содержанием 20-25% Р 2 О 5 (обычно из низкосортного сырья - бедных фосфоритов) и 30-32% Р 2 О 5 (из высококачественного сырья - апатитового концентрата)

При получении кислоты, содержащей 30-32% Р 2 О 5 полугидратно-дегидратным способом, процесс осуществляют в две стадии. Первую стадию - разложение фосфата - проводят при таких условиях, когда сульфат кальция выделяется в виде относительно устойчивого полугидрата, не оводняющегося в процессе экстракции до гипса. Во второй стадии выделившийся полугидрат, не отделенный от жидкой фазы, перекристаллизовывают в реакционной пульпе в дигидрат в присутствии затравочных кристаллов гипса с выделением крупных, хорошо образованных и быстро фильтрующих кристаллов.

Преимуществами указанного способа является максимальное (до 98,5%) извлечение из сырья фосфорной кислоты в раствор при минимальном расходе серной кислоты и получение гипса высокого качества, содержащего не более 0,3% общей Р 2 О 5 (вместо обычных 0,5-1,5%) и 0,02-0,08% водорастворимой Р 2 О 5 . Это объясняется предотвращением замещения сульфат-ионами в кристаллической решетке осадка и высвобождением ионов НРО4-, которые удерживались (адсорбировались на поверхности первоначально выделившихся частиц твердой фазы, так как полугидрат при этом предварительно перешел в жидкую фазу.

В отличие от применяемого в настоящее время дигидратного метода полугидратным методом можно поучить кислоту, содержащую 45-50% Р 2 О 5 . Это позволяет увеличить мощность действующих цехов в 1,5 - 1,8 раза и несколько уменьшить количество отхода - сульфатного остатка.

Для производства концентрированных фосфорных и сложных удобрений требуется фосфорная кислота, содержащая 37-55% Р2О5 и более, а для получения полифосфатов аммония и концентрированных жидких удобрений - кислота, содержащая 72-83% Р2О5. Поэтому во многих случаях экстракционную фосфорную кислоту подвергают концентрированию методом выпаривания.

На стадии опытной разработки находится получение фосфорной кислоты, содержащей до 55% Р 2 О 5 ангидритным методом (без упарки). Наиболее просто получают кислоту, содержащую 53-55% Р 2 О 5 , поскольку процесс сводится только к выпариванию воды и не сопровождается дегидратацией фосфорной кислоты и образованием фосфорного ангидрита не в орто-форме. Однако и этот процесс осложняется сильной коррозией аппаратуры и выделением примесей, содержащихся в кислоте.

Горячая фосфорная кислота оказывает сильное корродирующее действие на большинство известных металлов, сплавов и силикатно-керамических материалов. Выделяющиеся в процессе упаривания осадки могут забивать аппаратуру, в результате чего резко снижается ее производительность. Это затрудняет использование для упаривания фосфорной кислоты типовых и широко распространенных выпарных установок. Кислота, содержащая 53 - 55% Р2О5, может быть получена из относительно мало загрязненных фосфатов - апатитового концентрата или обогащенных высокосортных фосфоритов

Производство фосфорной кислоты другими методами

В промышленности представляет интерес метод получения Н3РО4, основанный на окислении фосфора водяным паром на медно-циркониевом катализаторе, оптимальные условия процесса: t = 973°C, соотношение водяного пара и фосфора равно 20:1

Р 4 + 16Н 2 О = 4Н 3 РО 4 + 10Н 2 + 1306,28 кДж.

В лабораторных условиях Н3РО4 получают

3Р + 5HNO 3 + 2H 2 O = 3Н 3 РО 4 + 5NO

Экстракция фосфорной кислоты из фосфатов серной кислотой обладает существенными недостатками: большой расход серной кислоты (2,5 - 3,1 т моногидрата на 1 т Р2О5) и необходимость перерабатывать или складировать значительное количество отхода - фосфогипса (4,5 -6,0 т на 1 т Р2О5 в пересчете на сухое вещество), переработка которого в серную кислоту связана с выпуском одновременно значительных количеств цемента или извести, не везде находящих достаточный сбыт. Поэтому непрерывно изыскиваются возможности экстрагирования фосфорной кислоты другими неорганическими кислотами - азотной, соляной, фтористо- и кремнефтористоводородной.

Основными затруднениями при разложении фосфатом азотной или соляной кислотой является отделение фосфорной кислоты от хорошо растворимых нитрата и хлорида кальция. При использовании кремнефтористой или фтористоводородной кислот выделяется осадок, легко отделяемы фильтрацией. Однако в этом случае регенерация кислоты требует применение высоких температур, но зато можно осуществлять процесс без дополнительных реагентов - кислот, используя фтор, содержащийся в сырье.

Получение фосфатов

Содержание в растворе различных анионных форм зависит от рН раствора. Все фосфаты щелочных металлов и аммония хорошо растворимы в воде. Для остальных металлов растворимы лишь дигидрофосфаты. Растворы средних фосфатов щелочных металлов вследствие гидролиза имеют сильнощелочную реакцию. (0,1 М раствор Na3PO4 имеет рН 12,7). В этих условиях, при наличии средних фосфатов щелочных металлов в качестве реактива, получить средние фосфаты других металлов не удаётся - из растворов осаждаются либо основные соли, либо гидроксиды и оксиды:

4Na 3 PO 4 + 5CaCl 2 + H 2 O = Ca 5 (PO 4) 3 OH + 10NaCl + Na 2 HPO 4

2AgNO 3 + 2Na 3 PO 4 + H 2 O = Ag 2 O + 2Na 2 HPO 4 + 2NaNO 3

Поэтому, для получения средних солей фосфорной кислоты необходимо уменьшить рН. Это достигается использованием раствора гидрофосфата натрия в присутствии аммиака:

2Na 2 HPO 4 + CaCl 2 + 2 NH 3 = Ca 3 (PO 4) 2 + 2 NH 4 Cl + 4NaCl

Также получить фосфаты (как средние, так и кислые) можно путём обменных реакций, где имеет место масса различных вариаций реактивов:

1. Непосредственное взаимодействие металла с фосфорной кислотой:

2H3PO4+3Ca= Ca3(PO4)2+ 3H2

2. Реакция между основным оксидом и фосфорной кислотой:

2H 3 PO 4 +3CaО= Ca 3 (PO 4) 2 + 3H 2 О

3. Обменная реакция между солями, одна из которых обязательно содержит фосфат- или ди- гидрофосфат-анион:

2Na 3 PO 4 + 3CaCl 2 = Ca 3 (PO 4) 2 + 6NaCl.

4. Реакция обмена фосфорной кислоты и гидроксида:

2Н 3 PO 4 + 3Ca(OH) 2 = CaНРО 4 ·2H 2 О

2Н 3 PO 4 + 3NaOH = Na 3 PO 4 + 3H 2 О

5. Реакция обмена фосфата и гидроксида:

2Na 3 PO 4 + 3Ca(OH) 2 = Ca 3 (PO 4) 2 + 3 NaOH

6. Взаимодействие дигидрофосфатов или гидрофосфатов с щёлочью:

Существует возможность получения фосфата непосредственно из простого вещества фосфора. Белый фосфор растворяют в щелочном растворе перекиси водорода:

Р 4 + 10Н 2 О 2 + 12NaOH = 4Na 3 PO 4 + 16H 2 O

Основным методом контроля чистоты полученного нерастворимого в воде фосфата, является его обильное промывание водой при фильтровании осадка. Что касается растворимых в воде фосфатов аммония и щелочных металлов, для контроля чистоты необходима аккуратная и неодноразовая кристаллизация, а также предварительная фильтрация раствора от возможных нерастворимых примесей.

Все вышеприведенные методы синтеза фосфатов применимы как в лабораторных условиях, так и в промышленности,.